Abstract
The Suzuki reactions of aryl chlorides containing both electron-donating
and electron-withdrawing groups with aryl boronic acid, catalyzed
by a simple non-phosphine ligand catalyst system, Pd(OAc)2 /DABCO,
were performed in a continuous capillary microreactor at 50 ˚C.
In the microreactor, the coupling product was obtained mostly in
near quantitative yield within a four hour residence time. In contrast,
the conversions were only 12-69% in batch reactions.
Key words
Suzuki - coupling - aryl chlorides - capillary - microreactor
References and Notes
<A NAME="RW06909ST-1A">1a </A>
Chighine A.
Sechi G.
Bradley M.
Drug Discovery Today
2007,
12:
459
<A NAME="RW06909ST-1B">1b </A>
Kirschning A.
Solodenko W.
Mennecke K.
Chem.
Eur. J.
2006,
12:
5972
<A NAME="RW06909ST-1C">1c </A>
Yoshida J.
Nagaki A.
Iwasaki T.
Suga S.
Chem. Eng. Technol.
2005,
28:
259
<A NAME="RW06909ST-2A">2a </A>
Deng Z.
Chuaqui C.
Singh J.
J. Med. Chem.
2006,
49:
490
<A NAME="RW06909ST-2B">2b </A>
Houghten RA.
Yu Y.
J. Am. Chem.
Soc.
2005,
127:
8582
<A NAME="RW06909ST-2C">2c </A>
Parlow JJ.
Curr. Opin. Drug Discovery Dev.
2005,
8:
757
<A NAME="RW06909ST-3A">3a </A>
Huryn DM.
Cosford NDP.
Annu. Rep. Med. Chem.
2007,
42:
401
<A NAME="RW06909ST-3B">3b </A>
George ED.
Farid SS.
Ind.
Eng. Chem. Res.
2008,
47:
8762
<A NAME="RW06909ST-3C">3c </A>
Takagi T.
Ramachandran C.
Bermejo M.
Yamashita S.
Yu LX.
Amidon GL.
Mol. Pharm.
2006,
3:
631
<A NAME="RW06909ST-4A">4a </A>
Watts P.
Haswell SJ.
Chem.
Soc. Rev.
2005,
34:
235
<A NAME="RW06909ST-4B">4b </A>
Wiles C.
Watts P.
Haswell SJ.
Pombo-Villar E.
Lab Chip
2001,
1:
100
<A NAME="RW06909ST-4C">4c </A>
Kawaguchi T.
Miyata H.
Ataka K.
Mae K.
Yoshida J.
Angew. Chem.
Int. Ed.
2005,
44:
2413
<A NAME="RW06909ST-4D">4d </A>
Lainchbury MD.
Medley MI.
Taylor PM.
Hirst P.
Dohle W.
Booker-Milburn KI.
J.
Org. Chem.
2008,
73:
6497
<A NAME="RW06909ST-5">5 </A>
Grant D.
Dahl R.
Cosford NDP.
J. Org. Chem.
2008,
73:
7219
<A NAME="RW06909ST-6A">6a </A>
Jamwal N.
Gupta M.
Paul S.
Green Chem.
2008,
10:
999
<A NAME="RW06909ST-6B">6b </A>
Liu L.
Zhang Y.
Xin B.
J.
Org. Chem.
2006,
71:
3994
<A NAME="RW06909ST-6C">6c </A>
Leadbeater NE.
Smith RJ.
Org.
Lett.
2006,
8:
4589
<A NAME="RW06909ST-6D">6d </A>
Zhou JR.
Fu GC.
J.
Am. Chem. Soc.
2004,
126:
1340
<A NAME="RW06909ST-6E">6e </A>
Molander GA.
Gormisky PE.
J.
Org. Chem.
2008,
73:
7481
<A NAME="RW06909ST-7A">7a </A>
Miyaura N.
Suzuki A.
Chem.
Rev.
1995,
95:
2457
<A NAME="RW06909ST-7B">7b </A>
Kotha S.
Lahiri K.
Kashinath D.
Tetrahedron
2002,
58:
9633
<A NAME="RW06909ST-8A">8a </A>
Barder TE.
Buchwald SL.
Org. Lett.
2004,
6:
2649
<A NAME="RW06909ST-8B">8b </A>
Colacot TJ.
Shea HA.
Org.
Lett.
2004,
6:
3731
<A NAME="RW06909ST-8C">8c </A>
Walker SD.
Barder TE.
Martinelli JR.
Buchwald SL.
Angew.
Chem. Int. Ed.
2004,
43:
1871
<A NAME="RW06909ST-8D">8d </A>
Barder
TE.
Walker SD.
Martinelli JR.
Buchwald SL.
J.
Am. Chem. Soc.
2005,
127:
4685
<A NAME="RW06909ST-8E">8e </A>
Zapf A.
Jackstell R.
Rataboul F.
Reirmeier T.
Monsees A.
Fuhrmann C.
Shaikh N.
Dingerdissen U.
Beller M.
Chem.
Commun.
2004,
38
<A NAME="RW06909ST-8F">8f </A>
Zapf A.
Beller M.
Chem. Commun.
2005,
431
<A NAME="RW06909ST-8G">8g </A>
Kwong FY.
Lam WH.
Yeung CH.
Chan
KS.
Chan ASC.
Chem. Commun.
2004,
1922
<A NAME="RW06909ST-8H">8h </A>
So CM.
Lau CP.
Kwong FY.
Org.
Lett.
2007,
9:
2795
<A NAME="RW06909ST-8I">8i </A>
So CM.
Lau CP.
Kwong FY.
Angew.
Chem. Int. Ed.
2008,
47:
8059
<A NAME="RW06909ST-8J">8j </A>
Yin J.
Rainka MP.
Zhang XX.
Buchwald SL.
J.
Am. Chem. Soc.
2002,
124:
1162
<A NAME="RW06909ST-9A">9a </A>
Comer E.
Organ MG.
J.
Am. Chem. Soc.
2005,
127:
8160
<A NAME="RW06909ST-9B">9b </A>
Liu LF.
Zhang YH.
Wang YG.
J.
Org. Chem.
2005,
70:
6122
<A NAME="RW06909ST-10">10 </A>
Basheer C.
Hussain FSJ.
Lee HK.
Valiyaveettil S.
Tetrahedron
Lett.
2004,
45:
7297
<A NAME="RW06909ST-11">11 </A>
Li JH.
Hu XC.
Yun L.
Xie YX.
Tetrahedron
2006,
62:
31
<A NAME="RW06909ST-12A">12a </A>
Gong JF.
Zhang YH.
Song MP.
Xu C.
Organometallics
2007,
26:
6487
<A NAME="RW06909ST-12B">12b </A>
Reine S.
Katarzyna G.
Eric F.
Veronique D.
Adv. Synth. Catal.
2007,
349:
373
<A NAME="RW06909ST-13A">13a </A>
Ming SC.
Po LC.
Yee KF.
Org. Lett.
2007,
9:
2795
<A NAME="RW06909ST-13B">13b </A>
Kantam ML.
Roy M.
Roy S.
Sreedhar B.
Madhavendra SS.
Choudary BM.
Dec RL.
Tetrahedron
2007,
63:
8002
<A NAME="RW06909ST-14A">14a </A>
Stanetty P.
Schnurch M.
Mihovilovic MD.
J. Org. Chem.
2006,
71:
3754
<A NAME="RW06909ST-14B">14b </A>
Kwon MS.
Kim S.
Park S.
Bosco W.
Chidrala RK.
Park J.
J. Org. Chem.
2009,
74:
2877
<A NAME="RW06909ST-14C">14c </A>
Huang H.
Liu H.
Jiang H.
Chen K.
J. Org. Chem.
2008,
73:
6037
<A NAME="RW06909ST-14D">14d </A>
Wan Y.
Wang H.
Zhao Q.
Klingstedt M.
Terasaki O.
Zhao D.
J. Am. Chem. Soc.
2009,
131:
4541
<A NAME="RW06909ST-14E">14e </A>
Wang DH.
Mei TS.
Yu JQ.
J. Am. Chem. Soc.
2008,
130:
17676
<A NAME="RW06909ST-15A">15a </A>
Li JH.
Zhu QM.
Xie YX.
Tetrahedron
2006,
62:
10888
<A NAME="RW06909ST-15B">15b </A>
Li JH.
Liu WJ.
Xie YX.
J.
Org. Chem.
2005,
70:
5409
<A NAME="RW06909ST-16">16 </A>
Leadbeater NE.
Marco M.
Org. Lett.
2002,
4:
2973
<A NAME="RW06909ST-17A">17a </A>
Fukuyama T.
Shinmen M.
Nishitani S.
Sato M.
Ryu I.
Org. Lett.
2002,
4:
1691
<A NAME="RW06909ST-17B">17b </A>
Yoon SK.
Choban ER.
Kane C.
Tzedakis T.
Kenis PJA.
J. Am. Chem. Soc.
2005,
127:
10466
<A NAME="RW06909ST-17C">17c </A>
Wiles C.
Watts P.
Haswell
SJ.
Villar EP.
Org.
Proc. Res. Dev.
2004,
8:
28
<A NAME="RW06909ST-17D">17d </A>
Tanaka K.
Motomatsu S.
Koyama K.
Tanaka S.
Fukase K.
Org.
Lett.
2007,
9:
299
<A NAME="RW06909ST-17E">17e </A>
Baxendale IR.
Jones CMG.
Ley SV.
Tranmer GK.
Chem.
Eur. J.
2006,
12:
4407
<A NAME="RW06909ST-17F">17f </A>
Worz O.
Jackel KP.
Richter T.
Wolf A.
Chem. Eng. Technol.
2001,
24:
138
<A NAME="RW06909ST-17G">17g </A>
Schubert K.
Brandner J.
Fichtner M.
Linder G.
Schygulla U.
Wenka A.
Microscale Thermophys. Eng.
2001,
5:
17
<A NAME="RW06909ST-18">18 </A>
Microreactor Reaction;
Typical Procedure. A stock solution of the aryl chloride (0.1
mmol), Pd(OAc)2 (3 mol%), DABCO (6 mol%)
and TBAB (0.1 equiv), in DMF (1 mL) was prepared and taken up in
a SGE gas-tight syringe. A second stock solution containing K3 PO4 ˙3H2 O
(3 equiv), and phenylboronic acid (1.5 equiv) in H2 O
(1 mL), containing DMF (50 µL) as an added to dissolve phenylboronic
acid, was also prepared and taken up in a second SGE gas-tight syringe.
The syringes were placed on a TS2-60 syringe pump that was set to
deliver 0.9 µL/min and the oil bath was set at
50 ˚C. The output from the reactor was quenched
with Et2 O immediately. The resulting mixture was extracted
with Et2 O (3 × 5 mL) and the
combined organic phase was washed with brine, and dried with anhydrous
Na2 SO4 , then concentrated and the desired product
was submitted for NMR analysis. In optimization experiments, the ¹ H
NMR spectrum of the product mixture was recorded and the product
conversion was determined by integration of the peaks arising from
CH3 or OCH3 groups of both the aryl chloride
and the product. The conversion was calculated using the formula: [Int.(prod)/Int.(prod
+ aryl chloride)] × 100.
<A NAME="RW06909ST-19">19 </A>
Batch Reaction;
Typical Procedure. A mixture of aryl chloride (0.5 mmol), phenylboronic
acid (1.5 equiv), Pd(OAc)2 (3 mol%), DABCO (6
mol%), TBAB (0.1 equiv), K3 PO4 ˙3H2 O
(3 equiv), H2 O (5 mL) and DMF (5 mL), was added to a
25 mL round-bottomed flask, and stirred at 50 ˚C or
80 ˚C for either 4 h or 24 h. After the reaction,
the solution was cooled to room temperature and extracted with Et2 O (3 × 15
mL). The combined organic phase was washed with brine, and dried
with anhydrous Na2 SO4 , then concentrated and
the product was analyzed by ¹ H NMR in order
to judge the conversion of aryl chloride. All of the final compounds in
this study were isolated by silica gel chromatography (petroleum
ether) for the purpose of spectroscopic identification.
<A NAME="RW06909ST-20">20 </A>
Tanaka K.
Motomatsu S.
Koyama K.
Tanaka S.
Fukase K.
Org.
Lett.
2007,
9:
299